Op Kapitel 12 Bedarfsplanung: Prognose - und Demand-Management Der primäre Unterschied zwischen Nachfragemanagement und Bedarfsprognose ist Vorhersage nur möglich, wenn quantitative Daten vorliegen. Eine Firma kann nicht beide Ansätze gleichzeitig ausführen. Demand Management ist proaktiv, während Prognose Versuche zu prognostizieren. Ein Ansatz beschäftigt sich mit der Unsicherheit, während der andere mit der bekannten Nachfrage beschäftigt ist. Demand Management ist proaktiv, während Prognose Versuche zu prognostizieren. Demand Management proaktiv versucht, die Nachfrage zu beeinflussen, während die Prognose einfach versucht, die Nachfrage vorherzusagen. Die strategische Bedarfsplanung würde am besten genutzt werden: Festlegung von Plänen für die Einstellung oder Vermittlung von Mitarbeitern. Um Pläne für Überstunden zu bestimmen. Zu entscheiden, ob eine Produktionsstätte geschlossen werden soll oder nicht. Um den täglichen Betrieb in einer Produktionsstätte zu führen. Zu entscheiden, ob eine Produktionsstätte geschlossen werden soll oder nicht. Für langfristige Entscheidungen wie Bauen oder Schließen einer Anlage ist eine strategische Bedarfsplanung notwendig. Die anderen sind kürzere Entscheidungen. Die Nachfrage nach Wohnraum zeichnet sich durch ein regelmäßiges Muster der Erhöhung zu einem Höhepunkt, dann fallen. Wenn die Nachfrage einen Tiefpunkt erreicht, dann wiederholt sie das Muster. Dieses Muster findet in der Regel über einen Zeitraum von drei bis fünf Jahren statt. Dies ist ein Beispiel dafür, welche Art von Nachfrage Muster Autokorrelation Schritt ändern Trend Saisonalität und Zyklen Saisonalität und Zyklen Saisonalität und Zyklen sind regelmäßige Muster der wiederholten Höhen und Tiefen, wie in diesem Beispiel beschrieben Convex Computer Company macht viele verschiedene Prognosen. Welche der folgenden Prognosen ist wohl die am wenigsten genaue Gesamtzahl der Desktops, die im nächsten Jahr verkauft werden sollen. Gesamtzahl der Laptops, die im nächsten Monat verkauft werden sollen. Gesamtzahl der Computer (Laptops und Desktops) im nächsten Monat verkauft werden. Gesamtzahl der Laptops mit 2 Gigabyte RAM, 80 Gigabyte Festplatte und 16 x DVD Laufwerk im nächsten Jahr verkauft werden. Gesamtzahl der Laptops mit 2 Gigabyte RAM, 80 Gigabyte Festplatte und 16 x DVD Laufwerk im nächsten Jahr verkauft werden. Je genauer die Prognose, desto weniger genau ist es wahrscheinlich. D ist die detaillierteste. Ein Unternehmen hat in den letzten drei Perioden folgende Informationen über seine Prognoseleistung. Was ist die mittlere absolute Abweichung (MAD) 200 Summieren der Absolutwerte der Fehler und Bestimmen der durchschnittlichen Ergebnisse in (300 200 100) 3 200. Umzug von Baugruppen auf Montage - oder Auftragsfertigung. Einfluss auf das Timing der Nachfrage. Alle von denen. Umzug von Baugruppen zu Montage - oder Auftragsfertigung. Verschiebbare Produkte erhalten endgültige Form nach Kundenwunsch ist eigentlich bekannt. Einige Prognosen sind noch notwendig (für Komponenten), und das Timing der Nachfrage wird nicht geändert. In den letzten Jahren haben einige Unternehmen begonnen, eng mit ihren Kunden und ihren Lieferanten zusammenzuarbeiten, indem sie Informationen teilen, um Nachfragepläne zu entwickeln und diese Pläne auszuführen. Das Verfahren, das sie verfolgen, ist bekannt als: Kollaborative Planung, Prognose und Nachschub. Konjunkturanalyse und Prognose. Gemeinsame Planung der Nachfrageprognosen Koordinierte Vorplanung der Anforderungen. Kollaborative Planung, Prognose und Nachschub. Kollaborative Planung, Prognose und Nachschub ist ein Prozess für den Austausch von Informationen und Plänen mit Supply Chain Partnern. Nehmen wir an, dass die Prognose für die letzte Periode FITt 200 Einheiten ist, und die jüngsten Erfahrungen deuten auf eine wahrscheinliche Umsatzsteigerung von 10 Einheiten pro Periode hin. Der tatsächliche Umsatz der letzten Periode erreichte 230 Einheiten. Angenommen, ein Glättungskoeffizient von 0,20 und ein Trend Glättungskoeffizient von 0,10, was ist die BASE Prognose für die nächste Periode Ft1 FITt (dt - FITt) 200 0,20 (230 - 200) 206 Zanda Corp. hat die Leistung von zwei verschiedenen Prognosen getestet Modelle, um zu sehen, welche es für den Gebrauch annehmen sollte. Es will das Modell wählen, das die kleinere Standardabweichung der Prognosefehler hat. Zanda sollte vergleichen, welche der folgenden, um ihre Wahl zu treffen MAPE der beiden Modelle MFE der beiden Modelle RMSE der beiden Modelle MAD der beiden Modelle RMSE der beiden Modelle RMSE bietet eine gute Annäherung der Standardabweichungen von Modellen Prognose Fehler . Das Tracking-Signal wird einem Manager vorschlagen, dass die Nachfrage nach einem Artikel sich ändert. Eine Prognosemodus-Parameter müssen möglicherweise angepasst werden. Es gibt Saisonalität in der Nachfrage. Alle diese Prognosemodi-Parameter müssen möglicherweise angepasst werden. Tracking-Signal schlägt einem Manager vor, dass Modellparameter eine Anpassung benötigen. Ein Prognosesystem, das den Wert des Alpha-Parameters in Abhängigkeit von der Ebene des Prognosefehlers ändert, ist bekannt als: Ein adaptives Modell. Ein Trend erweitertes exponentielles Glättungsmodell. Ein Tracking-Signal Ein Zeitreihenmodell. Eine kausale Regression. Ein adaptives Modell Adaptive Prognose passt automatisch Glättungskoeffizienten in einem exponentiellen Glättungsmodell als Reaktion auf ein Trackingsignal an. Die langfristige strategische Bedarfsplanung erfolgt in der Regel mit welchen Einheiten Verkäufe an einem bestimmten Standort Gesamter Geschäftsbereichsumsatz Gesamtproduktproduktumsatz Gesamtproduktfamilie Umsatz Gesamter Geschäftsbereichsverkauf Strategische Bedarfsplanung unterstützt die Gesamtzahl der Unternehmensentscheidungen. Was ist das Verhältnis zwischen Bedarfsmanagement und Nachfragevorhersage Die beiden Planungsaktivitäten werden eigenständig geführt. Demand Management Pläne sind in der Regel ein Beitrag zur Nachfrage Prognose. Die Nachfrageverwaltung erfolgt durch Betriebsleiter, während die Nachfragevorhersage von Marketingmanagern erfolgt. Sowohl B als auch C sind richtig. Demand Management Pläne sind in der Regel ein Beitrag zur Nachfrage Prognose. Demand Management Pläne wie Preisgestaltung und Promotion sind Eingaben erforderlich, um die Nachfrage zu prognostizieren. Welche der folgenden Faktoren sollten berücksichtigt werden, wenn man einen Prognoseprozess entwirft. Zeithorizont für die Planung. Detaillierungsgrad für die Planung. Verfügbarkeit der Daten. Alle diese Prognosesysteme sollten auf die Bedürfnisse der Benutzer zugeschnitten sein. Zeitreihenmethoden Zeitreihenmethoden sind statistische Techniken, die historische Daten über einen bestimmten Zeitraum nutzen. Zeitreihenmethoden gehen davon aus, dass das, was in der Vergangenheit aufgetreten ist, auch in Zukunft stattfinden wird. Wie die Namen Zeitreihen vorschlagen, beziehen diese Methoden die Prognose auf nur einen Faktor - Zeit. Dazu gehören der gleitende Durchschnitt, die exponentielle Glättung und die lineare Trendlinie und gehören zu den beliebtesten Methoden für die Nahbereichsprognose bei Service - und Fertigungsunternehmen. Diese Methoden gehen davon aus, dass sich identifizierbare historische Muster oder Trends für die Nachfrage im Laufe der Zeit wiederholen werden. Moving Average Eine Zeitreihenprognose kann so einfach sein wie die Nachfrage in der aktuellen Periode, um die Nachfrage in der nächsten Periode vorherzusagen. Dies wird manchmal als naive oder intuitive Prognose bezeichnet. 4 Zum Beispiel, wenn die Nachfrage 100 Einheiten in dieser Woche ist, ist die Prognose für die nächste Woche Nachfrage 100 Einheiten, wenn die Nachfrage sich aus 90 Einheiten statt, dann die folgenden Wochen Nachfrage beträgt 90 Einheiten, und so weiter. Diese Art der Prognosemethode berücksichtigt nicht das historische Nachfrageverhalten, das sie nur in der laufenden Periode auf die Nachfrage stützt. Es reagiert direkt auf die normalen, zufälligen Bewegungen in der Nachfrage. Die einfache gleitende Durchschnittsmethode verwendet in der letzten Vergangenheit mehrere Bedarfswerte, um eine Prognose zu entwickeln. Dies neigt dazu, die zufälligen Erhöhungen und Abnahmen einer Prognose, die nur einen Zeitraum verwendet, zu dämpfen oder zu glätten. Der einfache gleitende Durchschnitt ist nützlich für die prognostizierte Nachfrage, die stabil ist und zeigt keine ausgeprägten Nachfrage Verhalten, wie ein Trend oder saisonale Muster. Durchgehende Durchschnitte werden für bestimmte Zeiträume, wie z. B. drei Monate oder fünf Monate, berechnet, je nachdem, wie viel der Prognostiker die Nachfragedaten verkleinern möchte. Je länger die gleitende durchschnittliche Periode, desto glatter wird es sein. Die Formel für die Berechnung der einfachen gleitenden Durchschnitt ist die Berechnung eines einfachen Moving Average Die Instant Paper Clip Office Supply Company verkauft und liefert Bürobedarf an Unternehmen, Schulen und Agenturen innerhalb eines 50-Meile Radius seines Lagers. Das Bürobedarfsgeschäft ist wettbewerbsfähig, und die Fähigkeit, Aufträge umgehend zu liefern, ist ein Faktor, um neue Kunden zu bekommen und alte zu halten. (Büros in der Regel bestellen nicht, wenn sie niedrig auf Lieferungen laufen, aber wenn sie komplett ausgelaufen sind, so dass sie ihre Bestellungen sofort benötigen.) Der Manager des Unternehmens will sicher genug Fahrer und Fahrzeuge zur Verfügung stehen, um Aufträge umgehend zu liefern Sie haben ein ausreichendes Inventar auf Lager. Daher möchte der Manager die Anzahl der Aufträge prognostizieren, die im nächsten Monat auftreten werden (d. h. die Nachfrage nach Lieferungen zu prognostizieren). Aus den Aufzeichnungen der Lieferaufträge hat das Management die folgenden Daten für die letzten 10 Monate angesammelt, von denen es will, um 3- und 5-Monats-Gleitdurchschnitte zu berechnen. Nehmen wir an, dass es Ende Oktober ist. Die Prognose, die sich aus dem 3- oder 5-monatigen gleitenden Durchschnitt ergibt, ist typischerweise für den nächsten Monat in der Sequenz, die in diesem Fall November ist. Der gleitende Durchschnitt wird aus der Nachfrage nach Aufträgen für die letzten 3 Monate in der Sequenz nach folgender Formel berechnet: Der 5-Monats-Gleitender Durchschnitt wird aus den vorangegangenen 5 Monaten der Bedarfsdaten wie folgt berechnet: Der 3- und 5-Monats - Gleitende Durchschnittsprognosen für alle Monate der Bedarfsdaten sind in der folgenden Tabelle dargestellt. Tatsächlich würde nur die Prognose für November auf der Grundlage der letzten monatlichen Nachfrage vom Manager genutzt werden. Allerdings erlauben uns die früheren Prognosen für Vormonate, die Prognose mit der tatsächlichen Nachfrage zu vergleichen, um zu sehen, wie genau die Prognosemethode ist - das ist, wie gut es tut. Drei - und Fünf-Monats-Mittelwerte Beide gleitenden Durchschnittsprognosen in der obigen Tabelle neigen dazu, die Variabilität der tatsächlichen Daten zu verkleinern. Dieser Glättungseffekt kann in der folgenden Abbildung beobachtet werden, in der die 3-Monats - und 5-Monatsdurchschnitte einem Graphen der ursprünglichen Daten überlagert wurden: Der 5-Monats-Gleitender Durchschnitt in der vorherigen Abbildung glättet Schwankungen in größerem Maße als Der 3-Monats-Gleitender Durchschnitt. Allerdings spiegelt der 3-Monats-Durchschnitt die aktuellsten Daten, die dem Büroversorger zur Verfügung stehen. Im Allgemeinen sind die Prognosen, die den längerfristigen gleitenden Durchschnitt verwenden, langsamer, um auf die jüngsten Veränderungen der Nachfrage zu reagieren, als die, die mit kürzerperiodischen Bewegungsdurchschnitten gemacht wurden. Die zusätzlichen Datenperioden dämpfen die Geschwindigkeit, mit der die Prognose reagiert. Die Festlegung der entsprechenden Anzahl von Perioden, die in einer gleitenden durchschnittlichen Prognose verwendet werden, erfordert oft eine gewisse Versuchs - und Fehler-Experimentierung. Der Nachteil der gleitenden Mittelmethode ist, dass sie nicht auf Variationen reagiert, die aus einem Grund auftreten, wie z. B. Zyklen und saisonale Effekte. Faktoren, die Änderungen verursachen, werden in der Regel ignoriert. Es handelt sich im Grunde um eine mechanische Methode, die historische Daten konsistent widerspiegelt. Allerdings hat die gleitende durchschnittliche Methode den Vorteil, einfach zu bedienen, schnell und relativ kostengünstig zu sein. Im Allgemeinen kann diese Methode eine gute Prognose für die kurzfristige, aber es sollte nicht zu weit in die Zukunft geschoben werden. Weighted Moving Average Die gleitende durchschnittliche Methode kann angepasst werden, um die Fluktuationen der Daten besser zu reflektieren. Bei der gewichteten gleitenden Durchschnittsmethode werden den letzten Daten nach der folgenden Formel Gewichte zugeordnet: Die Anforderungsdaten für PM Computer Services (siehe Tabelle für Beispiel 10.3) folgen einem zunehmenden linearen Trend. Das Unternehmen möchte eine lineare Trendlinie berechnen, um zu sehen, ob es genauer ist als die in den Beispielen 10.3 und 10.4 entwickelten exponentiellen Glättung und angepassten exponentiellen Glättungsprognosen. Die für die Berechnungen der kleinsten Quadrate benötigten Werte sind wie folgt: Unter Verwendung dieser Werte werden die Parameter für die lineare Trendlinie wie folgt berechnet: Daher ist die lineare Trendliniengleichung Um eine Prognose für die Periode 13 zu berechnen, sei x 13 im linearen Trendlinie: Die folgende Grafik zeigt die lineare Trendlinie gegenüber den Ist-Daten. Die Trendlinie scheint die tatsächlichen Daten genau zu reflektieren - das heißt, eine gute Passform zu sein - und wäre somit ein gutes Prognosemodell für dieses Problem. Ein Nachteil der linearen Trendlinie ist jedoch, dass sie sich nicht auf eine Trendänderung anpasst, da die exponentiellen Glättungsvorhersagemethoden das sind, wird davon ausgegangen, dass alle zukünftigen Prognosen einer Geraden folgen. Dies begrenzt die Verwendung dieser Methode auf einen kürzeren Zeitrahmen, in dem Sie relativ sicher sein können, dass sich der Trend nicht ändert. Saisonale Anpassungen Ein saisonales Muster ist eine wiederholte Zunahme und Abnahme der Nachfrage. Viele Nachfrageartikel zeigen saisonales Verhalten. Bekleidungsverkäufe folgen jährlichen saisonalen Mustern, mit der Nachfrage nach warmer Kleidung, die im Herbst und Winter zunimmt und im Frühjahr und Sommer abnimmt, während die Nachfrage nach kühlerer Kleidung zunimmt. Die Nachfrage nach vielen Einzelhandelsartikeln, einschließlich Spielzeug, Sportausrüstung, Kleidung, elektronische Geräte, Schinken, Truthähne, Wein und Obst, erhöhen während der Ferienzeit. Grußkarte verlangt in Verbindung mit besonderen Tagen wie Valentinstag und Muttertag. Saisonale Muster können auch auf einer monatlichen, wöchentlichen oder sogar täglichen Basis auftreten. Einige Restaurants haben eine höhere Nachfrage am Abend als am Mittag oder am Wochenende im Gegensatz zu Wochentagen. Verkehr - also Verkauf - an Einkaufszentren nimmt am Freitag und Samstag auf. Es gibt mehrere Methoden, um saisonale Muster in einer Zeitreihenprognose zu reflektieren. Wir beschreiben eine der einfacheren Methoden mit einem saisonalen Faktor. Ein saisonaler Faktor ist ein Zahlenwert, der mit der normalen Prognose multipliziert wird, um eine saisonbereinigte Prognose zu erhalten. Eine Methode zur Entwicklung einer Nachfrage nach saisonalen Faktoren besteht darin, die Nachfrage für jede Saisonperiode durch die jährliche Gesamtnachfrage nach folgender Formel zu teilen: Die daraus resultierenden saisonalen Faktoren zwischen 0 und 1,0 sind in Wirklichkeit der Anteil der gesamten jährlichen Nachfrage jede Saison. Diese saisonalen Faktoren werden mit der jährlichen prognostizierten Nachfrage multipliziert, um die prognostizierten Prognosen für jede Saison zu erzielen. Berechnen einer Prognose mit saisonalen Anpassungen Wishbone Farms wächst Truthähne, um an eine Fleischverarbeitungsfirma während des ganzen Jahres zu verkaufen. Allerdings ist seine Hauptsaison offensichtlich im vierten Quartal des Jahres von Oktober bis Dezember. Wishbone Farms hat die Nachfrage nach Truthühnern für die letzten drei Jahre in der folgenden Tabelle gezeigt: Weil wir drei Jahre Nachfrage haben, können wir die saisonalen Faktoren berechnen, indem wir die gesamte vierteljährliche Nachfrage für die drei Jahre durch die Gesamtnachfrage über alle drei Jahre dividieren : Als nächstes wollen wir die prognostizierte Nachfrage für das nächste Jahr 2000 mit jedem der saisonalen Faktoren multiplizieren, um die prognostizierte Nachfrage für jedes Quartal zu erhalten. Um dies zu erreichen, benötigen wir eine Bedarfsprognose für das Jahr 2000. In diesem Fall, da die Nachfragedaten in der Tabelle einen allgemein ansteigenden Trend zu zeigen scheinen, berechnen wir eine lineare Trendlinie für die drei Jahre der Daten in der Tabelle, um eine grobe zu bekommen Prognose Schätzung: So ist die Prognose für 2000 58,17 oder 58,170 Truthähne. Mit dieser jährlichen Prognose der Nachfrage, die saisonbereinigten Prognosen, SF i, für das Jahr 2000 Vergleich dieser vierteljährlichen Prognosen mit den tatsächlichen Nachfrage-Werte in der Tabelle, scheinen sie relativ gute Prognose-Schätzungen, was sowohl die saisonalen Variationen in den Daten und Der allgemeine Aufwärtstrend. 10-12 Wie ist die gleitende Mittelmethode ähnlich der exponentiellen Glättung 10-13. Welche Auswirkung auf das exponentielle Glättungsmodell erhöht die Glättungskonstante von 10-14. Wie unterscheidet sich die exponentielle Glättung von der exponentiellen Glättung 10-15. Was bestimmt die Wahl der Glättungskonstante für den Trend in einem angepassten exponentiellen Glättungsmodell 10-16. In den Kapitelbeispielen für Zeitreihenmethoden wurde die Startvorhersage immer als die tatsächliche Nachfrage in der ersten Periode angenommen. Schlagen Sie andere Wege vor, dass die Startvorhersage im laufenden Gebrauch abgeleitet werden könnte. 10-17 Wie unterscheidet sich das lineare Trendlinien-Prognosemodell von einem linearen Regressionsmodell für die Prognose von 10-18. Von den Zeitreihenmodellen, die in diesem Kapitel vorgestellt wurden, einschließlich des gleitenden Durchschnitts und des gewichteten gleitenden Durchschnitts, der exponentiellen Glättung und der angepassten exponentiellen Glättung und der linearen Trendlinie, die man als das beste betrachtet. Warum 10-19. Welche Vorteile hat die exponentielle Glättung über eine lineare Trendlinie für die prognostizierte Nachfrage, die einen Trend zeigt. 4 K. B. Kahn und J. T. Mentzer, Prognose in Konsumenten - und Industriemärkten, The Journal of Business Forecasting 14, Nr. 2 (Sommer 1995): 21-28.Chapters Four (MC und TF) Welche zwei Zahlen sind im täglichen Bericht an den CEO von Walt Disney Parks amp Resorts in Bezug auf die sechs Orlando Parks a enthalten. Gestern prognostizierte Anwesenheit und gestern tatsächliche Anwesenheit b. Gestern aktuelle Anwesenheit und heute prognostizierte Anwesenheit c. Gestern prognostizierte Anwesenheit und heute prognostizierte Anwesenheit d. Gestern tatsächliche Anwesenheit und letzte Jahre tatsächliche Anwesenheit e. Gestern prognostizierte Anwesenheit und der jährliche durchschnittliche tägliche Prognosefehler Eine sechsmonatige gleitende Durchschnittsprognose ist besser als eine dreimonatige gleitende Durchschnittsprognose, wenn die Nachfrage a. Ist ziemlich stabil b. Hat sich aufgrund der jüngsten Promotion-Bemühungen verändert. Folgt einem Abwärtstrend d. Folgt einem saisonalen Muster, das sich zweimal jährlich wiederholt e. Folgt einem Aufwärtstrend Für eine gegebene Produktnachfrage beträgt die Zeitreihen-Trendgleichung 53 - 4 X. Das negative Vorzeichen auf der Steigung der Gleichung a. Ist eine mathematische unmöglichkeit b. Ist ein Hinweis darauf, dass die Prognose voreingenommen ist, wobei die Prognosewerte niedriger sind als die tatsächlichen Werte c. Ist ein Hinweis darauf, dass die Produktnachfrage rückläufig ist. Impliziert, dass der Bestimmungskoeffizient auch negativ ist e. Impliziert, dass das RSFE negativ sein wird. Das gilt für die beiden Glättungskonstanten des Prognosen-Inklusive Trend (FIT) - Modells a. Eine Konstante ist positiv, während die andere negativ ist. B. Sie heißen MAD und RSFE. C. Alpha ist immer kleiner als Beta. D. Eine Konstante glättet den Regressionsabstand, während der andere die Regressionssteigung glättet. E. Ihre Werte werden unabhängig bestimmt. Die Nachfrage nach einem bestimmten Produkt wird voraussichtlich 800 Einheiten pro Monat, gemittelt über alle 12 Monate des Jahres. Das Produkt folgt einem saisonalen Muster, für das der Januar-Monatsindex 1,25 beträgt. Was ist die saisonbereinigte Umsatzprognose für Januar a. 640 Einheiten b. 798,75 Einheiten c. 800 Einheiten d. 1000 Einheiten e. Kann nicht mit den angegebenen Informationen berechnet werden Ein saisonaler Index für eine Monatsreihe wird auf der Grundlage von drei Jahren Akkumulation von Daten berechnet werden. Die drei vorherigen Juli-Werte waren 110, 150 und 130. Der Durchschnitt über alle Monate ist 190. Der ungefähre saisonale Index für Juli ist ein. 0.487 b. 0.684 c. 1.462 d. 2,053 e. Kann nicht mit den Informationen berechnet werden. Anmerkungen sind eine Reihe von einleitenden Notizen zu Themen, die unter die breite Überschrift des Bereichs Operations Research (OR) fallen. Sie wurden ursprünglich von mir in einem einleitenden ODER Kurs benutzt, den ich im Imperial College gebe. Sie sind jetzt für alle Schüler und Lehrer, die an ODER unter den folgenden Bedingungen interessiert sind, zur Verfügung. Eine vollständige Liste der in OR-Notes verfügbaren Themen finden Sie hier. Prognosebeispiele Prognosebeispiel 1996 UG-Prüfung Die Nachfrage nach einem Produkt in jedem der letzten fünf Monate ist nachfolgend dargestellt. Verwenden Sie einen zweimonatigen gleitenden Durchschnitt, um eine Prognose für die Nachfrage im Monat 6 zu generieren. Wenden Sie eine exponentielle Glättung mit einer Glättungskonstante von 0,9 an, um eine Prognose für die Nachfrage nach Nachfrage im Monat 6 zu generieren. Welche dieser beiden Prognosen bevorzugen Sie und warumDie zweimonatigen Umzugsweisen Durchschnitt für Monate zwei bis fünf ist gegeben durch: Die Prognose für den Monat sechs ist nur der gleitende Durchschnitt für den Monat vor, dass dh der gleitende Durchschnitt für Monat 5 m 5 2350. Anwenden exponentielle Glättung mit einer Glättung Konstante von 0,9 erhalten wir: Wie zuvor Die Prognose für den Monat sechs ist nur der Durchschnitt für den Monat 5 M 5 2386 Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir für den gleitenden Mittelwert MSD (15 - 19) sup2 (18 - 23) sup2 (21 - 24) sup23 16.67 und für den exponentiell geglätteten Durchschnitt mit einer Glättungskonstante von 0,9 MSD (13 - 17) sup2 (16,60 - 19) sup2 (18.76 - 23) sup2 (22.58 - 24) sup24 10.44 Insgesamt sehen wir dann, dass die exponentielle Glättung den besten einen Monat voraus prognostiziert, da es eine niedrigere MSD hat. Daher bevorzugen wir die Prognose von 2386, die durch exponentielle Glättung erzeugt wurde. Prognosebeispiel 1994 UG-Prüfung Die nachstehende Tabelle zeigt die Nachfrage nach einem neuen Aftershave in einem Shop für jeden der letzten 7 Monate. Berechnen Sie einen zweimonatigen gleitenden Durchschnitt für Monate zwei bis sieben. Was wäre Ihre Prognose für die Nachfrage in Monat acht Bewerben exponentielle Glättung mit einer Glättung Konstante von 0,1, um eine Prognose für die Nachfrage in Monat acht ableiten. Welche der beiden Prognosen für den Monat acht bevorzugen Sie und warum der Ladenbesitzer glaubt, dass die Kunden auf diese neue Aftershave von anderen Marken wechseln. Besprechen Sie, wie Sie dieses Schaltverhalten modellieren und die Daten angeben, die Sie benötigen, um zu bestätigen, ob diese Umschaltung erfolgt oder nicht. Die zwei Monate gleitenden Durchschnitt für die Monate zwei bis sieben ist gegeben durch: Die Prognose für den Monat acht ist nur der gleitende Durchschnitt für den Monat vor, dass dh die gleitenden Durchschnitt für Monat 7 m 7 46. Anwendung exponentielle Glättung mit einer Glättung Konstante von 0,1 wir Erhalten: Wie schon vor der Prognose für den Monat acht ist nur der Durchschnitt für den Monat 7 M 7 31,11 31 (da wir keine gebrochene Nachfrage haben können). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir das für den gleitenden Durchschnitt und für den exponentiell geglätteten Durchschnitt mit einer Glättungskonstante von 0,1 Insgesamt sehen wir dann, dass der zweimonatige gleitende Durchschnitt den besten einen Monat voraus prognostiziert, da er eine niedrigere MSD hat. Daher bevorzugen wir die Prognose von 46, die durch den zweimonatigen gleitenden Durchschnitt produziert wurde. Um das Umschalten zu untersuchen, müssten wir ein Markov-Prozessmodell verwenden, in dem die Ländermarken und die notwendigen Statusinformationen und Kundenwechselwahrscheinlichkeiten (aus Umfragen) benötigt werden. Wir müssten das Modell auf historische Daten ausführen, um zu sehen, ob wir zwischen dem Modell und dem historischen Verhalten passen. Prognosebeispiel 1992 UG-Prüfung Die nachstehende Tabelle zeigt die Nachfrage nach einer bestimmten Marke von Rasiermesser in einem Geschäft für jeden der letzten neun Monate. Berechnen Sie einen dreimonatigen gleitenden Durchschnitt für Monate drei bis neun. Was wäre Ihre Prognose für die Nachfrage in Monat zehn Bewerben exponentielle Glättung mit einer Glättung Konstante von 0,3, um eine Prognose für die Nachfrage in Monat zehn ableiten. Welche der beiden Prognosen für den Monat zehn bevorzugen Sie und warum Der dreimonatige gleitende Durchschnitt für die Monate 3 bis 9 ist gegeben durch: Die Prognose für den Monat 10 ist nur der gleitende Durchschnitt für den Monat vor dem dh der gleitende Durchschnitt für Monat 9 m 9 20.33. Daher ist die Prognose für den Monat 10. 20. Die Anwendung einer exponentiellen Glättung mit einer Glättungskonstante von 0,3 ergibt sich: Wie vorher ist die Prognose für den Monat 10 nur der Durchschnitt für den Monat 9 M 9 18,57 19 (wie wir Kann keine gebrochene Nachfrage haben). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir das für den gleitenden Durchschnitt und für den exponentiell geglätteten Durchschnitt mit einer Glättungskonstante von 0,3 Insgesamt sehen wir dann, dass der dreimonatige gleitende Durchschnitt den besten einen Monat voraus prognostiziert, da er eine niedrigere MSD hat. Daher bevorzugen wir die Prognose von 20, die durch den dreimonatigen gleitenden Durchschnitt produziert wurde. Vorhersage Beispiel 1991 UG Prüfung Die folgende Tabelle zeigt die Nachfrage nach einer bestimmten Marke von Faxgerät in einem Kaufhaus in jedem der letzten zwölf Monate. Berechnen Sie den viermonatigen gleitenden Durchschnitt für die Monate 4 bis 12. Was wäre Ihre Prognose für die Nachfrage im Monat 13 Bewerben Sie exponentielle Glättung mit einer Glättungskonstante von 0,2, um eine Prognose für die Nachfrage im Monat 13 abzuleiten. Welche der beiden Prognosen für den Monat 13 Bevorzugen Sie und warum Welche anderen Faktoren, die in den obigen Berechnungen nicht berücksichtigt wurden, könnten die Nachfrage nach dem Faxgerät im Monat 13 beeinflussen. Der viermonatige gleitende Durchschnitt für die Monate 4 bis 12 ist gegeben durch: m 4 (23 19 15 12) 4 17,25 m 5 (27 23 19 15) 4 21 m 6 (30 27 23 19) 4 24,75 m 7 (32 30 27 23) 4 28 m 8 (33 32 30 27) 4 30,5 m 9 (37 33 32 30) 4 33 m 10 (41 37 33 32) 4 35,75 m 11 (49 41 37 33) 4 40 m 12 (58 49 41 37) 4 46,25 Die Prognose für den Monat 13 ist nur der gleitende Durchschnitt für den Monat davor, dh der gleitende Durchschnitt Für Monat 12 m 12 46,25. Daher ist die Prognose für den Monat 13 46. Die Anwendung einer exponentiellen Glättung mit einer Glättungskonstante von 0,2 erhalten wir: Wie vorher ist die Prognose für den Monat 13 nur der Durchschnitt für den Monat 12 M 12 38,618 39 (wie wir Kann keine gebrochene Nachfrage haben). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir das für den gleitenden Durchschnitt und für den exponentiell geglätteten Durchschnitt mit einer Glättungskonstante von 0,2 Insgesamt sehen wir dann, dass der viermonatige gleitende Durchschnitt den besten einen Monat voraus prognostiziert, da er eine niedrigere MSD hat. Daher bevorzugen wir die Prognose von 46, die durch den viermonatigen gleitenden Durchschnitt produziert wurde. Saisonale Nachfrage Werbung Preisänderungen, sowohl diese Marke und andere Marken allgemeine wirtschaftliche Situation neue Technologie Vorhersage Beispiel 1989 UG Prüfung Die Tabelle unten zeigt die Nachfrage nach einer bestimmten Marke von Mikrowellenherd in einem Kaufhaus in jedem der letzten zwölf Monate. Berechnen Sie einen sechsmonatigen gleitenden Durchschnitt für jeden Monat. Was wäre Ihre Prognose für die Nachfrage in Monat 13 Bewerben exponentielle Glättung mit einer Glättung Konstante von 0,7, um eine Prognose für die Nachfrage im Monat 13. Eine der beiden Prognosen für Monat 13 bevorzugen Sie und warum Jetzt können wir nicht berechnen, eine sechs Monat gleitenden Durchschnitt, bis wir mindestens 6 Beobachtungen haben - dh wir können nur einen solchen Durchschnitt ab dem 6. Monat berechnen. Wir haben also: m 6 (34 32 30 29 31 27) 6 30,50 m 7 (36 34 32 30 29 31) 6 32,00 m 8 (35 36 34 32 30 29) 6 32,67 m 9 (37 35 36 34 32 30) 6 34,00 m 10 (39 37 35 36 34 32) 6 35,50 m 11 (40 39 37 35 36 34) 6 36,83 m 12 (42 40 39 37 35 36) 6 38,17 Die Prognose für den Monat 13 ist nur der gleitende Durchschnitt für die Monat vor dem dh der gleitende Durchschnitt für Monat 12 m 12 38,17. Daher ist die Prognose für den Monat 13 38. Wenn wir eine exponentielle Glättung mit einer Glättungskonstante von 0,7 anwenden, erhalten wir:
No comments:
Post a Comment